
Ravšelj, D., Keržič, D., Tomaževič, N., Umek, L., Brezovar, N., A., Iahad, N., et al., kopā 149 autori, ieskaitot Mirke, E. (2025). Higher education students’ perceptions of ChatGPT: A global study of early reactions. PLoS ONE 20(2): e0315011. https://doi.org/10.1371/journal.pone.0315011[indexed in Web of Science (WoS), Open Access].
Daugule, I., Kapenieks, A. (2025). Exploring Knowledge Acquisition Dynamics in Small Student Groups: A Case Study. In: Auer, M.E., May, D. (eds) 2024 Yearbook Emerging Technologies in Learning. Learning and Analytics in Intelligent Systems, vol 44. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-80388-8_25. [indexed in SCOPUS].
Jansevskis, M., Osis, K. (2024). Securing the Future: The Role of Knowledge Discovery Frameworks. In: Book Chapter “Artificial Intelligence for Security: Enhancing Protection in a Changing World”, pp. 85 – 101, Springer Nature, ISBN 978-303157452-8, 978-303157451-1 [indexed in SCOPUS].
Jansevskis, M., Osis, K. (2024). User Interaction and Response-Based Knowledge Discovery Framework. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2023. Communications in Computer and Information Science, vol. 1979. Springer, Cham. https://doi.org/10.1007/978-3-031-48981-5_8 [indexed in SCOPUS].
Jankovskis, D., Cirule, I., Carbone, A. (2024). Digital Twins and E-Learning: Navigating Challenges and Opportunities. In: Casalino, G., et al. Higher Education Learning Methodologies and Technologies Online. HELMeTO 2023. Communications in Computer and Information Science, vol 2076, pp. 169-179. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-67351-1_12. [indexed in SCOPUS; Open Access].
Rohit, Grabusts, P., Teilans, A., Kapenieks, A. (2023). Automation of Feedback Analysis in Asynchronous E-learning. In: Conference Proceedings “Environment, Technology, Resources”, Vol. 2, pp. 84-88, DOI: https://doi.org/10.17770/etr2023vol2.7285. [indexed in SCOPUS; Open Access].
Jansevskis, M., Osis, K. (2023). Knowledge Discovery Frameworks and Characteristics. In: Baltic Journal of Modern Computing, Vol. 11, No.4, pp. 686 – 702, DOI: https://doi.org/10.22364/bjmc.2023.11.4.08, [indexed in SCOPUS; Open Access].
Daugule, I., Kapenieks, A., & Timsans, Z. (2022). Use of Knowledge Acquisition Surface to Monitor and Assess Students’ Success. International Journal of Emerging Technologies in Learning (iJET), 17(14), pp. 109–125. https://doi.org/10.3991/ijet.v17i14.31281. [indexed in SCOPUS; Open Access].
Nikolajeva, A., Teilans, A. (2021). Machine learning technology overview in terms of digital marketing and personalization. In: Proceedings - European Council for Modelling and Simulation, ECMS, Vol. 35, No.1, pp. 125 - 130, DOI: https://doi.org/10.7148/2021-0125. [indexed in SCOPUS and WoS; Open Access].
Rohit, Grabusts, P., Teilans, A. (2021). E-learning: Developing tomorrow's education. In: Conference Proceedings “Environment, Technology, Resources”, Vol. 2, pp. 136 - 140, DOI: https://doi.org/10.17770/etr2021vol2.6604. [indexed in SCOPUS; Open Access].
Kapenieks, J. (Sn.), Kapenieks J. (Jr.) (2021). Information System for Personalized Spaced e-Learning. In: Baltic Journal of Modern Computing, Vol.9, No. 4, pp. 421 – 435, DOI: https://doi.org/10.22364/bjmc.2021.9.4.03 , [indexed in SCOPUS and WoS; Open Access].
Kapenieks, J. (Sn.), Kapenieks J. (Jr.) (2021). Spaced Learning Solution in the e-Learning Environment. In Conference Proceedings of the 13th International Conference on Computer Supported Education (CSEDU), Vol. 2, pp.169-176, DOI: https://doi.org/10.5220/0010403901690176 [indexed in SCOPUS and WoS, Open Access].
Vitolina, I., Kapenieks, A., Grada, I. (2021). Modeling the e-Inclusion Prediction System. In: Conference Proceedings “International Conference on Computer Supported Education (CSEDU-2021)”, Vol.2, pp. 258 – 265, DOI: https://doi.org/10.5220/0010458302580265, [indexedin SCOPUS and WoS; Open Access].
Kapenieks, A., Daugule, I, Kapenieks, K. Zagorskis, V., Kapenieks, J. (Jr.), Timsans, Z., Vitolina, I. (2020). TELECI Approach for e-Learning User Behavior Data Visualization and Learning Support Algorithm. In: Baltic Journal of Modern Computing, Vol.8 No.1, pp. 129-142, DOI: https://doi.org/10.22364/bjmc.2020.8.1.06 [indexed in SCOPUS and WoS, Open Access].
………………………….
Konferenču ziņojumu kopsavilkumi (Abstracts):
Mirķe, E., Daugule, I. Challenges and Opportunities Integrating Generative AI Tools in K-12 Teachers’ Work: Case Study of Latvian Teachers’ Experience. No: 17th International Conference on Education and New Learning Technologies: EDULEARN25 Proceedings, Palma, Spain, 06.30.-02.07.2025. Valencia: IATED Academy, 2025, pp.9568-9574, ISBN 978-84-09-74218-9. ISSN 2340-1117. DOI: https://doi.org/10.21125/edulearn.2025.2475.